Exercise 5

Prove that multiplication of complex numbers is commutative, as stated at the beginning of Sec. 2.

Solution

Here we have to show that

$$
z_{1} z_{2}=z_{2} z_{1}
$$

where z_{1} and z_{2} are complex numbers. Use the definition of multiplication of two complex numbers, equation (4) on page 2 .

$$
\begin{aligned}
z_{1} z_{2} & =\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \\
& =\left(x_{1} x_{2}-y_{1} y_{2}, y_{1} x_{2}+x_{1} y_{2}\right)
\end{aligned}
$$

Use the commutative property of addition for real numbers.

$$
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+y_{1} x_{2}\right)
$$

Use the commutative property of multiplication for real numbers.

$$
\begin{aligned}
z_{1} z_{2} & =\left(x_{2} x_{1}-y_{2} y_{1}, y_{2} x_{1}+x_{2} y_{1}\right) \\
& =\left(x_{2}, y_{2}\right)\left(x_{1}, y_{1}\right) \\
& =z_{2} z_{1}
\end{aligned}
$$

